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1. Introduction 

The brain is a delicate organ whose ultrastructural organization is particularly important in the 

life of the organism. For this reason it is also specially important as an object of cryopreservation 

for the purpose of eventual resuscitation of the organism. It thus is desirable be able to estimate 

the extent of damage to the brain that may expected postmortem before preservation in some 

form (including tissue fixation as well as cryopreservation) can be effected. This article briefly 

summarizes efforts to estimate computationally the extent of degradation in cortical rat brain 

tissue as a function of postmortem, warm ischemic exposure. (A more detailed report of this 

study should eventually appear.) The efforts involved analysis of electron-microscope (EM) 

images of cortical rat brain tissue that had been exposed to different periods of warm ischemia 

prior to fixation. A “learning” algorithm was developed using Mathematica which could be 

“trained” on a series of achromatic images expressed as numerical arrays to estimate the 

corresponding ischemic times. The algorithm would then, in theory, be able to estimate the 

ischemic time for other, not previously processed images without any prior knowledge of the 

samples that were imaged. In this way it would be able to assess the extent of damage, expressed 

in units of ischemic time at constant, body temperature, and the correctness of its assessment 

would be reflected in how accurately it was able to estimate the ischemic exposure. It was hoped 

that insight would be gained into the process of tissue deterioration under ischemia, as well as a 

method being obtained to assess the quality of any preservative method. The method in fact 

achieved only limited success, but some useful insight was obtained, and an algorithmic 

procedure was developed that might possibly find other uses beyond its original, intended scope. 

2. Methods 

A master algorithm was given a batch of EM images, “primary training images” (PTIs) in a 

standardized format covering tissue samples exposed to different ischemic times. The master 

algorithm then constructed a working algorithm which, given an image expressed as a numerical 

array, would crunch the array down to a single number giving the ischemic time in hours. The 

working algorithm in turn had two parts whose functions respectively were (1) to process the 

image into  a “signature” vector of coefficients, and (2) to inner-product the vector with a 

second, “scaling” vector to obtain the final (scalar) output, the estimated ischemic time. 

Processing the image involved reducing it to a one-dimensional signature by a power spectrum 

analysis of its 2-dimensional fourier transform followed by a further reduction to products of 

powers of coefficients of an approximating polynomial. The scaling vector in turn was to be 

determined by the master algorithm from a coefficient matrix whose rows were the signature 

vectors of the PTIs in a chosen order.  



The problem for the master algorithm then became that of finding a scaling vector whose product 

with the coefficient matrix would fit the known ischemic times in a least-squares sense. In 

practice a very good-fitting scaling vector could be obtained in this way, but the vector itself was 

ill-conditioned (contained very large-magnitude entries) making it useless for processing other 

images the master algorithm had not seen before. In short the working algorithm was too 

“strong” and had to be weakened and otherwise adapted so it would apply to other images 

besides the PTIs. This was accomplished by a method that used singular value decomposition of 

the coefficient matrix, with Tikhonoff regularization for reduction in size of the reciprocal-

singular values.[1] A working algorithm could then be obtained that would produce a least-

squares fit to an expanded set of images including, besides the original, PTIs, a representative 

sampling of “secondary training images” (STIs) that the master algorithm had not seen before. In 

practice the fitting to the original images was no longer nearly perfect, but by way of 

compensation was much better on the STIs. The working algorithm could then be applied to 

other, similar but previously unseen “followup test images” (FTIs) with results comparable to 

those obtained for the PTIs and STIs. 

3. An Illustration 

To illustrate the above principles and verify that the program was working correctly, a series of 

random, cloud-pattern images was generated mathematically and subjected to varying amounts 

of simple forms of degradation. In this way sets of PTIs, STIs and FTIs were numerically created 

for the master algorithm. Figure 1 shows an image, dimensioned 256 x 256, that is similar to one 

of the original, undegraded images, and the same image with two forms of degradation, blurring 

(gaussian filter) and noise (normal distribution), both by 50 arbitrary units corresponding 

subjectively to a heavy effect. 
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Fig. 1. A random cloud image: (a) original (undegraded); (b) heavily blurred; (c) not blurred, but 

with heavy added noise. 



 

Figure 2 shows results of running the program which in this case is attempting to estimate how 

much degradation an image received, for the two cases of blurring and noise. Results for PTIs 

are represented by green dots, STIs cyan dots, FTIs red dots. In each case the PTIs and STIs 

cover degradation exposures from 0-50 spaced at intervals of 5 (11 exposure points in all). For 

the FTIs the degradation amounts are spaced at intervals of 2.5 (21 points in all) so there are 

FTIs both at the same exposures as the PTIs and STIs, and at the midpoints between these 

exposures. In this way the working algorithm can be tested both for images it has never seen (the 

FTIs in general) and also for degradation exposures it was not trained on, to see if it will still 

make the correct estimates. For all types of images there are three images per exposure point 

with all images different from one another, starting out as random cloud patterns (129 images in 

all). Errors in the working algorithm’s estimates are shown as deviations from the blue reference 

line. As can be seen, there is at least a rough fit for all classes of images and both types of 

degradation, with a better fit for noise than for blurring. 
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Fig. 2. Performance of working algorithms for estimating image degradation for (a) blurring and 

(b) noise. X-axis is actual amount of degradation, Y-axis is estimated amount; errors are shown 

as deviations from blue reference line. Green dots correspond to primary training images, cyan 

(blue-green) to secondary training images, and red to followup test images.  

4. Main Results 



The main study focused on damage to brain tissue caused by warm ischemia, as shown in EM 

images. The images themselves were not degraded but the tissue they recorded was; it was hoped 

that the extent of this degradation could be estimated in much the same way as with the practice 

examples above.  

The study commenced with preliminary work using a limited number of EM images that were 

obtained in a previous study and kindly made available to the author.[2] This in turn used male 

Wistar rats approximately 100 days old and weighing approximately 400g. The rats were 

euthanized and their cadavers stored at room temperature. Their brains were dissected at 1, 3, 6, 

9, 12, and 24 hours postmortem and EM images in 1024 x 1024 format were prepared showing 

cortical tissue at various magnifications ranging down to a pixel size of about 2 nm. The images 

were downsized as necessary to a standard pixel length of 6.15 nm and cropped to 512 x 512 

format. Results of a typical calculation are shown in Figure 3 (only PTIs and STIs; 3 PTIs and 

one STI per exposure point). Though the fitting appears rather good, there were significant 

shortcomings in obtaining the results, such as the absence of temperature control and the need to 

numerically process some of the images to obtain a large enough number in a desired format. 

These deficiencies led to followup, original work using a larger number of samples with formats 

standardized and ischemic temperature controlled.  

 

 

 

 

Fig. 3. Results obtained with algorithm for estimating ischemic times using images from a 

previous study, with ischemic exposure starting at rat body temperature. X-axis is actual 

ischemic time in hours, y-axis estimated ischemic time. Only PTIs (green, three per exposure) 

and STIs (cyan, one per exposure) are shown. 



 

 

The followup work used male Sprague-Dawley rats approximately 100 days old and weighing 

approximately 400 g. The rats were euthanized and their cadavers maintained at rat body 

temperature (37°C) for 0.00, 1.00, 2.25, 3.86, 6.00, 9.00, 13.50, 21.00, 36.00, and 81.00 hours 

before their brains were fixed, dissected, and samples prepared for EM imaging. The choice of 

exposure times followed a simple formula which it was thought might simplify mathematical 

analysis and did in fact have some significance in presenting the results (see below). There was 

an additional exposure at 24.00 hours which provided at least one data point for the FTIs that 

was not found in the PTIs or STIs. (In fact these samples used cold, bloodless ischemic exposure, 

with storage temperatures between 0° and 4°C, thus were not strictly comparable to the other 

images. They were used because they were the only available images with nonstandard 

exposures.) The images that were used were in 1024 x 1024 format with pixel length of 3.0nm 

(figure 4). Typical results are shown in figure 5, a rather noisy fit somewhat in contrast to figure 

3. In 5(a) the ischemic times are fit directly where in 5(b) an “exposure index” u is used for 

fitting, where u is defined in terms of ischemic time t by u = 10t/(9+t). This results in equal 

spacing for the chosen exposure points. The problem defined in this way was significantly 

different from that defined in the more straightforward case in which ischemic times were used 

directly but differed widely in spacing. As can be seen, the fitting is still noisy but rather 

resembles the earlier case of fitting blurred images (figure 2a), if two extreme outlier points on 

the x-axis are ignored. Over all it is clear that some fitting is occurring but it is crude, and not as 

impressive as the preliminary results obtained earlier (figure 3). It should be noted too that for 

this case each 1024 x 1024 image was split into 16 equal components dimensioned 256 x 256 

each and results were averaged over the 16 cases to obtain the fitting for one exposure point. 

This appeared to improve the overall fitting a bit, though not substantially. (It will also be noted 

that the FTIs corresponding to the 24-hour exposure [u=7.27] fit well with the other cases despite 

the noted difference in the ischemic protocol. It is not clear how to interpret this very limited 

result but it does appear interesting.) 
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Fig. 4. Clippings from images used in the study showing rat brain cortical tissue with 

postmortem ischemic times of (a, b) 0, (c, d) 21, and (e, f) 81 hours. Each clipping is 256 x 256 

pixels with 3.0 nm pixel width (about 750 nm total width) and corresponds to a central portion of 

the original, 1024 x 1024 images.  
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Fig. 5. Results of estimating ischemic times using the second series of images. (a) shows fit to 

ischemic times as in fig. 3, (b) shows fit to ischemic index u defined for ischemic time t by u = 

10t/(9+t).  

5. Conclusions 

This study appears to be the first attempt to quantitatively estimate ischemic times in brain tissue 

by algorithmic analysis of EM images. The method had only modest success and may not be 

suitable for practical applications. Alternatively, it may be that substantially better (if more 

costly) results would be obtained by averaging signatures over many whole images per exposure 

rather than over clippings from one, as was done here. Further study is called for, particularly in 

view of the unexplained, apparent early success followed by less satisfactory results when a 

more careful experimental methodology could be used. Optimistically, it is possible that some of 



the difficulty in estimating ischemic times could be an indication that modest ischemia, up to a 

few hours, causes relatively little change in the brain’s ultrastructure. Such a conclusion is far 

from demonstrated, however. Another source of difficulty could be the variability of tissue 

samples, making it more difficult for the algorithm to focus on features that should hold for 

broad classes of images. (This difficulty might be alleviated by more extensive averaging, as 

noted above.) It is worth saying that studies of ischemia would profit from the ability to observe 

the progressive changes in a single tissue sample rather than having to consider separate samples 

for each exposure point, as here. It is also worth noting that the method could have applications 

beyond that considered here, for example, in assessing other forms of material damage through 

image analysis. 
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